Life Cycle Assessment: A simple overview of a complex process

Marty Matlock
Jennie Popp
Nathan Kemper
Zara Niederman
Center for Agricultural and Rural Sustainability

Mike Faupel
Michele Halsell
Jon Johnson
Applied Sustainability Center

Greg Thoma
Darin Nutter
Tom Costello
Institute for Sustainable Engineering Analysis
Everything is Connected

Source: R. E. Ricklefs' Economy of Nature
Everything is changing
Every process has inputs and outputs
The more processes, the more complexity

- Raw Materials
- Manufacturing Process
 - Energy
 - Water
 - Gas Waste
 - Liquid Waste
 - Solid Waste
- Energy
- Water
- Solid Waste
- Liquid Waste
- Gas Waste
- End Product
Life Cycle Assessment quantifies processes

Goal: Quantify inputs and outputs for a system in terms of a standardized unit of measure.

The scope and structure of the LCA are directly dependent upon the unit of measure (functional unit):
1. Energy embodied in a single product;
2. Green house gasses produced per unit product;
3. Tons of carbon produced per volume of product;
4. Volume of water consumed per mass of product…

Goal and Scope of LCA must be formulated at the outset of the project, and the **functional unit must be defined**.

LCA Process is described in ISO 14040 and 14044 Standards.
Four Phases of a Life Cycle Assessment

- Phase 1: Goal Definition and Scope
- Phase 2: Life Cycle Inventory
- Phase 3: Life Cycle Impact Assessment
- Phase 4: Assessment/Scenario Analysis
Life Cycle Assessment: Reconciling Functional Units

Greenhouse Gas Potentials

1 g CO$_2$ = 1 g CO$_2$-equiv.

1 g CH$_4$ = 25 g CO$_2$-equiv.

1 g NO$_2$ = 310 g CO$_2$-equiv.
Cotton LCA Case Study
Phase 1: Goal Definition and Scope

- **Develop** a model

- **Estimate** the energy embodied in a unit (metric ton or 480 lb bale) of cotton produced (lint plus seed)

- **Compare** the total energy (MJ) required over varying cotton production strategies
Cotton LCA Case Study

Phase 2: LCA Inventory

<table>
<thead>
<tr>
<th>Region</th>
<th>Production Strategy</th>
<th>Irrigation</th>
<th>Fertilizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America East</td>
<td>Mechanized</td>
<td>Med</td>
<td>High</td>
</tr>
<tr>
<td>North America West</td>
<td>Mechanized</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>South America Mech</td>
<td>Mechanized</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>South America Non-Mech</td>
<td>Non-Mechanized</td>
<td>Med</td>
<td>Med</td>
</tr>
<tr>
<td>Australia</td>
<td>Mechanized</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Mediterranean - Mech</td>
<td>Mechanized</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Mediterranean - Non-Mech</td>
<td>Non-Mechanized</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Asia - Mech</td>
<td>Mechanized</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Asia - Non-Mech</td>
<td>Non-Mechanized</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Africa - Non Mech</td>
<td>Non-Mechanized</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
Africa Cotton Production: Organic Fertilizer and Non-Irrigated
Cotton LCA Case Study
Phase 3: Impact Assessment
North America: Eastern United States

Field Preparation	Mechanical
Planting | Mechanical
Irrigation | Mechanical
Pest Control | Mechanical

Weed Control | Mechanical
Fertilization | Mechanical Application
Embodied Chemical
Harvesting | Mechanical
Yield | MJ/Tonne of Cotton
Cotton LCA Case Study
Phase 4: Assessment/Scenario Analysis

Embodied Energy of Cotton Production MJ/Tonne

North America East
North America West
South America Mechanized
South America Non-Mech
Australia
Mediterranean Mech
Mediterranean Non-Mech
Asia Mech
Asia Non-Mech
Africa Non-Mech
Life Cycle Assessment Case Study: Carbon Equivalent GHG of Fluid Milk

Production → Processing → Distribution → Consumption
Life Cycle Assessment Case Study: Carbon Equivalent GHG of Fluid Milk