Modifying High Tunnels for Improved Performance

Jason McAfee
Curt Rom, Luke Freeman, Heather Friedrich, Spencer Fiser, Julia Stover
Donn Johnson, Barbara Lewis, Jennie Popp, Elena Garcia
Background

High Tunnels are being studied and used for

• Season extension of berry crops
 • Advance the spring crop
 • Extend the fall crop
• Environmental protection
 • Freezes, frosts, rains
• Pest exclusion
The Need for High Tunnel Modifications/Additions

• More heating in early spring and late fall to extend harvest
• More protection in early spring and late fall to protect flowers/fruit
• Less heat in the summer months
• Cooling options for late summer months
Sub-studies for Potential Tunnel Modifications/Additions to Extend, Protect Crops

1. **Tunnels in Tunnels (TnT)**
 - Build temporary TnT in order to provide additional environmental modification of the tunnel system in spring and fall to provide more heat

2. **Summer Shading**
 - Apply shade over plant canopies to reduce heat stress and potentially delay flowering in primocane fruiting blackberry and raspberry

3. **Overhead Mist Systems (not being presented)**
 - Install overhead mist lines as an add-on to existing irrigation line to help cool during severe heat
Spring Frosts by Region

☑ One single layer of poly provides one hardiness zone of protection
Sub-study 1. Tunnels in Tunnels (TnT)

Research and Objectives

• Spring Production Systems – Floricane berries
 1. Increase heat unit accumulation to advance the crop
 2. Provide increased frost/freeze protection during freezing events during early season bloom – protecting flowers

• Fall Production Systems – Primocane berries
 1. Increase heat unit accumulation to maintain flowering longer through the season
 2. Increase heat unit accumulation to sustain fruit maturation
 3. Provide increased frost/freeze protection during freezing events during fruit ripening – protecting fruit
Effect of TnT on Spring ‘Natchez’ Blackberry Yield

- **2013**
 - Cumulative Yield: 3,766 lbs/A
 - Cumulative Yield: 15,549 lbs/A
 - Cumulative Yield: 19,363 lbs/A

- **2014**
 - Cumulative Yield: 10,030 lbs/A
 - Cumulative Yield: 22,897 lbs/A
 - Cumulative Yield: 28,334 lbs/A

Dates:
- 6/13, 6/18, 6/23, 7/3, 7/8, 7/13, 7/18, 7/23, 7/28
- 5/26, 6/5, 6/15, 6/25, 7/5, 7/15, 7/25, 8/4
Effect of TnT on Spring ‘Natchez’ Blackberry Quality

Berry Weight (g)

- **FD 2013**
- **HT 2013**
- **TNT 2013**
- **FD 2014**
- **HT 2014**
- **TNT 2014**

Marketable Yield (%)

- **FD 2013**
- **HT 2013**
- **TNT 2013**
- **FD 2014**
- **HT 2014**
- **TNT 2014**

Soluble Solids

- **FD 2013**
- **HT 2013**
- **TNT 2013**
- **FD 2014**
- **HT 2014**
- **TNT 2014**

N=3
Effect of TnT on Fall ‘Prime-Ark 45’ Blackberry Yield

- **2013**
 - TNT: ~12,308 lbs/A
 - HT: ~11,889 lbs/A
 - FD: ~7,090 lbs/A

- **2014**
 - TNT: ~7,446 lbs/A
 - HT: ~7,030 lbs/A
 - FD: ~4,672 lbs/A

*lbs/A calculated at 8 ft row spacing
Effect of TnT on Fall ‘Prime-Ark 45’ Blackberry Quality

Berry Weight (g)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>HT</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>TNT</td>
<td>8.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Marketable Yield (%)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>35%</td>
<td>40%</td>
</tr>
<tr>
<td>HT</td>
<td>40%</td>
<td>45%</td>
</tr>
<tr>
<td>TNT</td>
<td>45%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Soluble Solids

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>HT</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>TNT</td>
<td>8.0</td>
<td>8.5</td>
</tr>
</tbody>
</table>
TnT Study Seasonal Summary

Spring
- TnT has potential to increase yields 1-2 weeks earlier than HT, 2-3 weeks earlier than field
- Growers may want to consider having a combination of both TnT and HT when considering windows of production in spring
- Both TnT and HT protect the crop during poor weather conditions such as wet springs, late frosts
- TnT can limit pollination
- HT significantly increased berry weight across two growing seasons, TnT increased for one
- TnT and HT both significantly increased marketable yield percentage compared to field both seasons
- Field showed significantly greater sugar content in both seasons

Fall
- TnT and HT significantly increased yield by ~40% for an extended fall season
- TnT and HT significantly increased yields on average 30-40% for a short fall season (early frost)
- TnT and HT showed increased berry weight although variable between seasons
- HT significantly increased sugar content for both growing seasons, TnT showed greater than field in one season
TnT Schematic
Methanol chafing dish burners 1/50sqft Burn 6-7 hrs
Effect of high tunnel and tunnel in tunnel (TnT) on **daily average temperature** over a 1 month period October-November, 2013.
Effect of high tunnel and tunnel in tunnel on daily low temperature over a 1 month period October-November, 2013.
Effect of high tunnel and tunnel in tunnel on ambient temperature difference over a 1 month period October-November, 2013.
Effect of high tunnel and tunnel in tunnel on **temperatures** over a 1 month period October-November, 2013.

<table>
<thead>
<tr>
<th>Trt</th>
<th>Avg. Temp (°C)</th>
<th>Avg. Minimum Temp (°C)</th>
<th>Ambient Temp Difference (°C)</th>
<th>Freeze Exposure (hrs/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>TnT</td>
<td>96</td>
<td>14.3 a</td>
<td>96</td>
<td>6a</td>
</tr>
<tr>
<td>HT</td>
<td>96</td>
<td>12.1 b</td>
<td>96</td>
<td>4.3 b</td>
</tr>
<tr>
<td>Field</td>
<td>96</td>
<td>10.6 c</td>
<td>96</td>
<td>4.2 b</td>
</tr>
<tr>
<td>Prob > F</td>
<td><0.0001</td>
<td>0.035</td>
<td>0.0004</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Z Mean separation using LSD for comparisons and means followed by different letters are significantly different, \(\alpha=0.05 \).
Effect of high tunnel and tunnel in tunnel on temperature with supplemental heating over a 48 hour period November 12-13, 2013.
Effect of high tunnel and tunnel in tunnel on ambient temperature difference with supplemental heating over a 48 hour period November 12-13, 2013.
Table 3. Effect of high tunnel and tunnel in tunnel on temperatures with supplemental heating over a 48 hour period November 12-13, 2013.

<table>
<thead>
<tr>
<th>Trt</th>
<th>Avg. Temp (°C) N Mean</th>
<th>Avg. Minimum Temp (°C) N Mean</th>
<th>Ambient Temp Difference (°C) N Mean</th>
<th>Freeze Exposure (hrs) N Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TnT</td>
<td>6 15.1 a</td>
<td>6 1.3 a</td>
<td>6 7.1 a</td>
<td>6 0.5 b</td>
</tr>
<tr>
<td>HT</td>
<td>6 9.8 b</td>
<td>6 -3.1 b</td>
<td>6 2.8 b</td>
<td>6 4.3 a</td>
</tr>
<tr>
<td>Field</td>
<td>6 4.4 c</td>
<td>6 -5.8 b</td>
<td>6 0 c</td>
<td>6 7.7 b</td>
</tr>
</tbody>
</table>

Prob > F <0.0001 0.0009 <0.0001 0.003

Mean separation using LSD for comparisons and means followed by different letters are significantly different, α=0.05.
Effect of high tunnel and tunnel in tunnel on temperature **with no supplemental heating** over a 48 hour period November 23-24, 2013.
Effect of high tunnel and tunnel in tunnel on ambient temperature difference with no supplemental heating over a 48 hour period November 23-24, 2013.

![Graph showing temperature difference over time with high tunnel, tunnel in tunnel, and field data. The graph highlights daytime periods with a temperature difference between 0 and 20 degrees Celsius.]
Table 4. Effect of high tunnel and tunnel in tunnel on temperatures with no supplemental heating over a 48 hour period November 23-24, 2013.

<table>
<thead>
<tr>
<th>Trt</th>
<th>N</th>
<th>Avg. Temp (°C)</th>
<th>Avg. Minimum Temp (°C)</th>
<th>Ambient Difference Temp (°C)</th>
<th>Freeze Exposure (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TnT</td>
<td>6</td>
<td>5.1 a²</td>
<td>-1.6 a</td>
<td>3.4 a</td>
<td>6</td>
</tr>
<tr>
<td>HT</td>
<td>6</td>
<td>2.5 ab</td>
<td>-4 ab</td>
<td>1.1 b</td>
<td>7</td>
</tr>
<tr>
<td>Field</td>
<td>6</td>
<td>-0.3 b</td>
<td>-5.1 b</td>
<td>0 c</td>
<td>14</td>
</tr>
</tbody>
</table>

Prob > F | 0.007 | 0.03 | <0.0001 | ns

² Mean separation using LSD for comparisons and means followed by different letters are significantly different, α=0.05.
TnT Study Summary

- Tunnels provide increased daily heat accumulation
- Tunnels provide minimal heat conservation during a frost
- Tunnels with supplemental heat had some temperature increase
- TnT provide increased daily heat accumulation over tunnels
- TnT provide increased heat conservation during a frost
- TnT with supplemental heat had significant temperature increase
Sub-study 2. High Tunnel Shading of Brambles

Research Objectives

• Focus: Fall high tunnel study
• Place shade structures over plant canopies of both blackberry and raspberry ~July 1 for 30 days to reduce heat stress and delay flowering
• Delaying flowering and reducing heat stress may have potential to increase marketable yields
Effects of Shade on ‘Prime-Ark 45’ Blackberry Yield

2013

Cumulative Yield (g per 10ft plots)

Date

No Shade
Shade

N=3

2014

Cumulative Yield (g per 10ft plots)

Date

No Shade
Shade

N=3

*lbs/A calculated at 8 ft row spacing

= ~6,809 lbs/A

= ~4,360 lbs/A

= ~7,588 lbs/A

= ~5,604 lbs/A
Effects of Shade on ‘Prime-Ark 45’ Blackberry Quality

Berry Weight (g)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoShade</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Shade</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Marketable Yield (%)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2013</th>
<th>2013</th>
<th>2014</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoShade</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Shade</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>55</td>
</tr>
</tbody>
</table>

Soluble Solids (brix)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>2013</th>
<th>2013</th>
<th>2014</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoShade</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Shade</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>
Effects of Shade on Raspberry Yield

Cumulative Yield (g per 10ft plots)

Date

2013

N=3

*lbs/A calculated at 8 ft row spacing

No Shade

Shade

N=3

= ~2,471 lbs/A

= ~1,787 lbs/A
Effects of Shade on ‘Nantahala’ Raspberry Quality

Berry Weight (g)

- **NoShade**: N=3
- **Shade**: N=3

Marketable Yield (%)

- **NoShade**: N=3
- **Shade**: N=3

Soluble Solids

- **NoShade**: N=3
- **Shade**: N=3
HT Shade Study Summary and Conclusions for Blackberry

- Shading ~1 month before fruiting showed no effect on reducing heat during flowering
- Shade significantly reduced flowering (not pollination)
- Shade significantly increased cumulative yield on average 30-40% over two growing seasons
- Shade increased berry weight in blackberry but could be contributed to lower yields (further statistical analysis needed)
- Shade significantly increased marketable yield percentage in one growing season but not enough to justify cost and labor of shading
- Shade had no effect on sugar content
HT Shade Study Summary for Raspberry

• Shading ~1 month prior to expected yields significantly increased yield in ‘Nantahala’ raspberry by ~30% for one growing season
• Additional season of data needed to conclude effect on yield
• Shade reduced overall raspberry quality by significantly reducing berry size and marketable yield percentage
• Shade did not have any effect on sugar content of raspberry
• Reducing the amount of shade may have potential to increase fruit quality
What have we learned?

- TnT can be a good tool for growers for enhancing and protecting seasonal bramble yields
- Growers should consider TnT as a tool for increasing early spring yields
- TnT has potential to be a good tool in the fall for protecting and extending harvest but will vary by year
- TnT is not outperforming HT in fall production
- HT can serve as a form of crop insurance for growers during seasonal occurrence of bad weather (wet springs, late frosts)
- Shading mid-late summer for fall primocane producing blackberry is NOT recommended
- Shading mid-late summer for fall raspberry production should be considered and additional seasons of data needed to confirm
Thank you!

Questions?